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Everything I say during these lectures, in written and/or orally: 

 

 Is my own and personal opinion 

 Does not represent my employer’s point of view 

 Does not commit me or my employer to anything 

 It is meant to be solely for educational purposes 

 Does not constitute any kind of investment advice 

www.svsamiti.org 
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1. Introduction 
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References on Machine Learning 
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 Stanford 

 Coursera MOOC 

 Machine Learning 

 Andrew Ng 

 

 

 

 CalTech 

 Online lectures 

 Machine Learning 

 Yaser Abu-Mostafa 

 Book: “Learning from Data” 

 YouTube videos 

 Neural Networks Demystified 

 Welch Labs 

 

 

blog.netapp.com 



 Of course 

 Because I have this! 

 

 

 

 

 

 

 

 

 

 

 

 

 OK Seriously, this MOOC is very good and I highly recommend you to take it 

 It is free... unless you want to have this diploma in LinkedIn :P 

 I have no commission if you sign up :P 
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wikipedia.org 

Am I qualified to give these lectures? 

I approve! 

#einsteinapproves 



Definitions of Machine Learning 
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 The term “Machine Learning” (ML) was coined in 1959 by Arthur Samuel 

 He defined ML as a field of study 

 that gives computers the ability to learn  

 without being explicitly programmed 

 

 There is another ML definition from Tom Mitchell in 1998 

 He defined ML as a well-posed learning problem:  

 A computer program is said to learn from experience E  

 with respect to some task T  

 and some performance measure P 

 if its performance on T 

 as measured by P 

 improves with experience E 

 

 

 

 

cdn-images-1.medium.com 
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Data Scientist = do a MOOC? 
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 New kid on the block? 

 Mathematical tools from at least 1700s (Newton, 

Lagrange, Legendre, Cauchy, Bayes) 

 

 Informal Learning? 

 Requires at least undergraduate level in Probability, 

Statistics, Linear Algebra, Multivariate Calculus, 

Numerical Methods and Programming 

 

 Jack of all trades and modeller - OK 

 Mathematics has always been the language of Science and 

Economics 

 The new “universal language” is now data analysis: 

crunching numbers and separating data signals from noise 

 

 Machine Learning? 

 ML is useful, but it is NOT the only way we deal with data 

 Actuaries do Machine Learning too!  

 Linear regression is Machine Learning! 

 

 

 



Professionals vs Amateurs 
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"Everybody can fit, but the ability to deal with overfitting is what  

separates professionals from amateurs in Machine Learning.“ 

Yaser Abu-Mostafa, CalTech 

 

 The biggest minds in Machine Learning and AI are all PhDs: 

 Andrew Ng – PhD @ Berkeley 

 Yaser Abu-Mostafa – PhD @ CalTech 

 Yann LeCun – PhD @ UPMC 

 

 The biggest companies in AI are led by PhDs: 

 Deep Blue (beat Chess champion Kasparov) 

 Murray Campbell – PHD @ Carnegie Mellon 

 Deep Mind (beat Go champion) 

 Demis Hassabis – PhD @ University College London 

 Open AI (beat the DOTA 2 champion 1v1) 

 Ilya Sutskever – PhD @ University of Toronto 

 

 

 

 

 

 

www.tucsondjservice.com 

pbs.twimg.com 



Data Science and the Scientific Method 
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 Data gathering 

 Before Big Data this was very complicated 

 Now Big Data makes this much easier (but not trivial) 
 

 Data cleaning and labelling 

 This requires deep insight and knowledge of the problem 

 For example, removing outliers and re-scaling variables 
 

 Choice of the model 

 Inputs: parameters, variables, etc 

 Outputs: performance/error measure 
 

 Separating the data in subsamples 

 Training set 

 Cross Validation set (optional) 

 Test set 
 

 

 images.carsondellosa.com 



Training, Cross-validation and Test 
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 Training set 

 In-sample data 

 We can do whatever we want in this set to improve the model 

 This is where we calibrate the parameters 

 In other words, where the “machine learns” 
 

 Cross-Validation set 

 “In-sample bis” or “pre-out-of-sample” 

 It is used to compare different models 

 E.g. choosing the degree of a polynomial linear regression 

 We treat this set as a pre-test set 
 

 Test set  

 Out-of-Sample 

 This is where we evaluate the chosen model 

 It is generally used to compute the accuracy of the model 
 

 Rule of thumb for a data set 

 70% training, 30% test 

 60% training, 20% cross-validation, 20% test 

 

 

 

 

Google images 



Overfitting: definition 
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 The goal is to approximate the “true” objective function 𝑓(𝑥) 

 We assume there is a pattern, otherwise there is nothing to do 

 

 We start with a family of possible functions 

 For example, linear functions (Linear Regression) 

 

• Let us denote the family as ℎ(𝑥; 𝜃) 

 𝑥 are the features 

 𝜃 are the parameters 
 

• We need to decide what kind of approximation we want 

 Do we want to be very good in the Training set? 

 Or to have comparable errors in Training and Validation sets? 

 We cannot have both in general, unless we compromise 
 

• Very good in-sample is not always a blessing 

 By forcing a very high accuracy in the Training set we could be 

sacrificing predictive power on the Test set 

 In other words, we could be fitting the noise, not the signal 

 This is known as overfitting 

 
i.pinimg.com 

i.sportstalkflorida.com 



Overfitting: bias and variance 
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 We need to choose the right model 

 Too simple underfitting 

 Too complex  overfitting 

 

 High bias  underfitting 

 The errors in Training and Validation are comparable 

 The model performs well 

 But the errors are too high in the Training and Validation sets 

 The model cannot do better with the current complexity 

 

 High variance  overfitting 

 The error in the Training set is small 

 But the error in the Validation set is big 

 We need to give up some accuracy on the Training set 

 So we can reduce error in the Validation set 

 

 Rule of thumb for “sweet spot” of model complexity: 

 Number of features ≤ number of samples / 10 

 

 

 

www.learnopencv.com 

vitalflux.com 



Example of Overfitting 
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 Support Vector Machines 

 Gaussian Kernel 

 𝐶 = 1, 𝜎 = 0.1 

 

 

 

 

 

 

“increase 𝜎 

Underfit” 

decrease 𝜎 

“Overfit” 

 You will do this in the ML MOOC 

from Stanford - Coursera 



2. Linear Regression 
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Linear regression explained 

ML - Mauricio Labadie 17 

 We start with a real-valued objective  

 𝑦 ∈ 𝑅 
 

 That can be described with 𝑁 features 

 𝑥 = (1, 𝑥1, … , 𝑥𝑁) 
 

 Assume that a linear combination of the features 

 𝜃0 + 𝜃1𝑥1 +⋯+ 𝜃𝑁𝑥𝑁 = 𝑥𝜃 

 

 Can approximate the objective 

 𝑥𝜃 ≈ 𝑦 

 

 Given a set of 𝑀 samples and their respective objectives 

 𝑥 1 , 𝑦 1 , 𝑥 2 , 𝑦 2 , … , 𝑥 𝑀 , 𝑦 𝑀  

 

 We want to find the parameters that better approximate the objective 

 𝜃 =

𝜃0
𝜃1
⋮
𝜃𝑁

→ 𝑥 𝑚 𝜃 ≈ 𝑦 𝑚    for all   𝑚 = 1,… ,𝑀 

 

 

algo-trades.com 



Defining the cost function 
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 Define the Cost function as the error between the objective and our approximation 

𝐶𝑜𝑠𝑡 𝜃 =
1

2𝑀
 ℎ 𝑥(𝑚); 𝜃 − 𝑦(𝑚) 2
𝑀

𝑚=1

  

 

 Recall that ℎ 𝑥(𝑚); 𝜃 = 𝑥(𝑚)𝜃, hence 

𝐶𝑜𝑠𝑡 𝜃 =
1

2𝑀
 𝑥(𝑚)𝜃 − 𝑦(𝑚) 2
𝑀

𝑚=1

  

 

 Let us write the equation in vectorial form. If we define 
 

𝑋 =

1 𝑥1
(1)

1 𝑥1
(2)
   
⋯ 𝑥𝑁

(1)

⋯ 𝑥𝑁
(2)

⋮ ⋮
1 𝑥1

(𝑀)   
⋱ ⋮
⋯ 𝑥𝑁

(𝑀)

,   𝑌 =

𝑦(1)

𝑦(2)

⋮
𝑦(𝑀)

 

 

• Then 

𝐶𝑜𝑠𝑡 𝜃 =
1

2𝑀
𝑋𝜃 − 𝑌 𝑇 𝑋𝜃 − 𝑌  

cdn2.content.compendiumblog.com 



Minimising the cost function 

ML - Mauricio Labadie 19 

• We just wrote the cost function as 

𝐶𝑜𝑠𝑡 𝜃 =
1

2𝑀
𝑋𝜃 − 𝑌 𝑇 𝑋𝜃 − 𝑌   

  

 If we want to minimise the Cost we need to compute its gradient 

𝛻𝜃𝐶𝑜𝑠𝑡 𝜃 =
1

𝑀
𝑋𝑇 𝑋𝜃 − 𝑌  

 

• Making 𝛻𝜃𝐶𝑜𝑠𝑡 𝜃 = 0 we found the optimal parameters 

 

𝜃 = (𝑋𝑇𝑋)−1𝑋𝑇𝑌 

 

• Let us see that 𝜃 we just found is a global minimum: 

 

 The Hessian (matrix of second derivatives) is 𝐻 =
1

𝑀
𝑋𝑇𝑋 

 It is positive-definite because for any vector 𝑤 ≠ 0 we have 

 

𝑤𝑇𝐻𝑤 =
1

𝑀
𝑋𝑤 𝑇 𝑋𝑤 > 0 

 

 



Overfitting a linear regression 
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𝐹 𝑥 = 1 + 𝑥 + 𝑥2 + 𝑥3 

 We have 10 samples and we use a 10-degree polynomial to fit 

 We are not following our rule of thumb: 

 Number of features ≤ number of samples / 10 



Fixing overfitting: regularisation 
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 We add a penalty to the cost function to “force 𝜽 to be small” 

𝐶𝑜𝑠𝑡 𝜃 =
1

2𝑀
 ℎ 𝑥(𝑚); 𝜃 − 𝑦(𝑚) 2
𝑀

𝑚=1

+
𝜆

2𝑀
 𝜃𝑛

2

𝑁

𝑛=1

  

• Define 𝐽 as the identity matrix but with a zero in its first entry: 
 

𝐽 =

0 0
0 1

   
⋯ 0
⋯ 0

⋮ ⋮
0 0

   
⋱ ⋮
⋯ 1

 

• Then 

𝐶𝑜𝑠𝑡 𝜃 =
1

2𝑀
𝑋𝜃 − 𝑌 𝑇 𝑋𝜃 − 𝑌 +

𝜆

2𝑀
𝐽𝜃 𝑇(𝐽𝜃)  

 The gradient is 

𝛻𝜃𝐶𝑜𝑠𝑡 𝜃 =
1

𝑀
𝑋𝑇 𝑋𝜃 − 𝑌 +

𝜆

𝑀
𝐽𝜃 

• Therefore 

𝜃 = (𝑋𝑇𝑋 + 𝜆𝐽)−1𝑋𝑇𝑌 

 

• The regularisation will make it harder for ℎ 𝑥; 𝜃  to take very convoluted shapes 

 Smoother shape  Reduced variance 

 “Less is more” 

spiritclothing.ie 

cdn.shopify.com 

exclude 𝜃0 



3. Logistic Regression 

ML - Mauricio Labadie 22 



Logistic regression explained 
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 We start with a binary objective  

 𝑦 ∈ {0,1} 
 

 That can be described with a number of features 

 𝑥 = (1, 𝑥1, … , 𝑥𝑁) 
 

 Assume that a linear combination of the features 

 𝜃0 + 𝜃1𝑥1 +⋯+ 𝜃𝑁𝑥𝑁 = 𝑥𝜃 

 

 Together with a logistic function 

 𝑧 → ℎ(𝑧) ∈ (0,1) 
 

 Can approximate the probability of the objective 

 ℎ 𝑥𝜃 ≈ 𝑃[𝑦 = 1] 
 

 We want to find the parameters that better approximate the probability of the objective 

 𝜃 =

𝜃0
𝜃1
⋮
𝜃𝑁

→ ℎ(𝑥 𝑚 𝜃) ≈ 𝑃[𝑦 𝑚 = 1]    for all   𝑚 = 1,… ,𝑀 

 

 

 



Classification boundaries 
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Example: “toxicity” of trades 
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 We label trades based on execution costs: 

 “Good” if the cost is lower than expected 

 “Toxic” if the cost is higher than expected 

 

 To determine the label, for each trade we have defined a 

metric called “toxicity” 

 Good if Toxicity < 1 

 Toxic if Toxicity > 1 

 

 Why this is important? 

 “Good” trades can be executed with simple 

algorithms (e.g. VWAP) 

 “Toxic” trades require sophisticated executions (and 

probably human intervention) 

 

 Goal: 

 Build a classification model that, given a trade, 

will label it as Good or Toxic 

 



Preparing the data 
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 Five features to explain “Toxicity” of a trade 

 

 Train set 

 60% i.e. 7,369 samples 

 Here we calibrate the ML model 

 Optimal parameters for the logistic regression 

 

 Cross-validation set 

 20% i.e. 2,456 samples 

 Here we pick the optimal threshold for the 

logistic regression 

 

 Test set 

 20% i.e. 2,456 samples 

 Here we only check the accuracy of the model 

 

 

 

 



Training the ML model 
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 Preparing the data 

 Transform Toxicity into booleans 

 Normalise the variables 

 Substracting the mean 

 Dividing by range, either max-min or std dev 

 

 

 Training the ML model 

 It is just one line of code! 

 

 

 Predicting outcomes based on the ML model 

 Compute the logistic with the calibrated parameters 

 

 

 Compute the accuracy of the model in the training set 

 

 

 

 

 

 

 

 

 



Training for Good 
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 Features that matter (p-value < 0.05): 

 None 

 SpreadBps 

 Factor1 

 

 Features that we can ignore: 

 VolatilityPct 

 AdvPct 

 Factor2 

 

 

 

 

 

 



Cross-validation for Good 
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 Pick optimal threshold that maximises 

accuracy: 

 0.49 and 0.5 

 

 I love symmetry 

 Hence I choose 0.5 

 

static7.depositphotos.com 



Test for Good: we are done, right? 
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 This result seems OK 

 69% accuracy 

 Better than random coin toss i.e. 50% 

 

• Better than 2/3 of chance 

 In line with the accuracy in the training 

set i.e. 69% 

 



Not really… 
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 Only 2% of samples have ℎ > 0.5 

 

 We know that around 33% of samples are good 

 Around 67% accuracy by predicting “not 

good” 

 

 Using ℎ ≡ 1 

 We predict all  samples are not good 

 

 So a constant prediction is as good as our 

sophisticated ML model? 

 

 Thank you ML, you are so useful! 

 

 

 We need to change our approach 

 ML is a continuous iterative process 



Choose the threshold differently 
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 Let us compare our predictions vs the actual values:  

 

 

 

 

 

 

 

 

 

 We will use the F1-Score 

 Precision  𝑃 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 
 

 Recall  𝑅 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐴𝑐𝑡𝑢𝑎𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 
 

 𝐹 = 2
𝑃𝑅

𝑃+𝑅
 

 

 Choose the threshold in cross-validation that maximises F 

 

True 

Positive 

False 

Positive 

False 

Negative 

True 

Negative 

Actual 
P

re
di

ct
ed

 

www.ancientpages.com 

1 0 

0 
1 



Comparing Accuracy and F1 Score 
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 Best accuracy is for threshold = 0.9 

 But we are almost predicting all samples are 

not Good, i.e. ℎ ≡ 1 

 

 Best F1 score is for threshold = 0.11:  

 But we are almost predicting all samples are 

Good, i.e. ℎ ≡ 0 

 

 What if we add Accuracy and F1 score? 

 We are trying to predict well without being 

either ℎ ≡ 0 or ℎ ≡ 1 

 Best threshold is 0.41 

 Accuracy is 49% 

 F1 Score is 0.33 

 It is around the median for h 



Test for Good 2: nailed it already? 
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 This result seems better than the previous 
one: 

 Lower accuracy: 49% 

 Random choice of Good, Neutral and 
Toxic is around 33% 

 95% confidence assuming Bernoulli is 

 1.96 ∗
0.33∗0.67

2456
~2%  

 

 In general terms, the in-sample accuracy 
should be similar to out-of-sample accuracy 



Logistics for multi-class problems 
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 We know how to deal with binary classifications 

 Good 

 Neutral 

 Toxic 

 

 But what if we have multiple classes? 

 Toxicity: Good, Neutral, Toxic 

 Number recognition: 0,1,2,3,4,5,6,7,8,9 

 Chess: pick which piece to move 

 MMORPGs: pick what spell/skill to use 

 Maximise DPS, aggro, defence, heals, etc 
 

 The philosophy of the One vs All approach 

 We already have the single-class logistics 

 We can compare them all and pick the best 

 

 

http://assets1.ignimgs.com 



One vs All: from single logistics … 
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 We choose Good, Neutral and Toxic based on 33% quantiles of toxicity 

 

 

 

 We run 3 logistic regressions, one for each class type 

 

 

 

 

 This gives us 3 sets of optimal parameters for the 3 logistics 

 

 

 

 

 

 



… to the best outcome 

ML - Mauricio Labadie 37 

 We have computed 3 logistic regressions 

 Good 

 Neutral 

 Toxic 

 

 We now apply the One vs All method:  

 Label each sample based on the highest logistic value 

 

 

 

 

 

 

 

 

 Here we do not need to calibrate the threshold for classification 

 Only need Train set and Test set, no Cross-validation set 

 

 

 

 

 

 

 

www.tes.com 



One vs All: comparing logistics 
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 Let us focus on only one feature 

 For example, Factor1 

 Make zero all other factors 

 

 If Factor1 increases then: 

 Less likely to be a good sample 

 More likely to be a toxic sample 

 Neutral is more or less invariant 

 

 We could try again without the Neutral class 

 Homework! 

 

 

 

 

 

knowyourmeme.com 



One vs All: Results 
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 Did we succeed in the ML model for toxicity? 

 

 Statistically speaking, yes 

 Predictive power (in-sample and out-of-sample) above 33% with 95% confidence 

 

 But in practice, is this model good enough to trade real money? 

 I think it is a very good start 

 But we could do much better if we work the model a bit more 

 

 What can be done? 

 Use regularisation to compute the optimal parameters 

 Add more features 

 

 If you do not know what features to add, use Neural Networks (tomorrow) 

Error Lower Bound Upper Bound

Train Set 37.88% 1.14% 36.73% 39.02% Yes

Test Set 37.66% 1.40% 36.26% 39.06% Yes

SignificantAccuracy
Confidence Interval 95%



Gradient Descent explained 
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 What happens if we do not have a closed-form solution of the 

parameters? 

 We need to find the minimum numerically 
 

 Gradient Descent for a function 𝐶(𝜃) 

 Move in the direction where 𝐶(𝜃) has  fastest decrease 

 That is −𝛻𝐶 𝜃  
 

• We will move in the parameter space at a given learning rate 𝛼 

 𝜃 𝑘 + 1 = 𝜃 𝑘 − 𝛼𝛻𝐶(𝜃(𝑘)) 

 

• Sometimes it is written as a “programming update” 

 𝜃:= 𝜃 − 𝛼𝛻𝐶(𝜃) 

 

ludovicarnold.altervista.org 



Gradient Descent and convergence 
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• The learning algorithm for gradient descent, we just found, is 

 𝜃:= 𝜃 − 𝛼𝛻𝐶(𝜃) 

 

 Initial condition is important 

 Esp. when the cost function is not convex 

 We could converge towards a local minimum instead 

 This is one of the biggest headaches in Neural Networks 

 

 Learning rate is important 

 Small learning rate could take ages to converge 

 Big learning rate could “overshoot” the target and diverge 

 

• Rule of thumb:  

 Plot 𝐶(𝜃(𝑘)) vs iteration 𝑘 to check if it is decreasing 

 

 media.licdn.com 

qph.ec.quoracdn.net 



Gradient Descent for logistic regression 
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• For Logistic Regression, the cost function we will use is 

𝐶𝑜𝑠𝑡 𝜃 = −
1

𝑀
 𝑦𝑚 log ℎ 𝑥(𝑚)𝜃 − (1 − 𝑦𝑚) log(1 − ℎ 𝑥(𝑚)𝜃 ) 

𝑀

𝑚=1

 

  

 This cost function is convex in ℎ 𝑥(𝑚)𝜃  and has a unique global minimum. 

 

 If we compute the partial derivatives, using ℎ′ = ℎ(1 − ℎ) we obtain 
 

𝜕𝐶𝑜𝑠𝑡

𝜕𝜃𝑛
=

1

𝑀
 (ℎ 𝑥 𝑚 𝜃 − 𝑦𝑚)

𝑀

𝑚=1

𝑥𝑛
(𝑚) 

• Coincidentally, this is the same derivative form for the Linear Regression, but different ℎ 𝑥(𝑚)𝜃 . 

 

• In vectorial form 

𝛻𝜃𝐶𝑜𝑠𝑡 =  
1

𝑀
𝑋𝑇 ℎ 𝑋𝜃 − 𝑌  

 

• In consequence, the learning algorithm is 

𝜃:= 𝜃 − 𝛼
1

𝑀
𝑋𝑇 ℎ 𝑋𝜃 − 𝑌  

si.com 



Gradient Descent with regularisation 
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• We just add the regularisation term, as before 

𝐶𝑜𝑠𝑡 𝜃 = −
1

𝑀
 𝑦𝑚 log ℎ 𝑥(𝑚)𝜃 − (1 − 𝑦𝑚) log(1 − ℎ 𝑥(𝑚)𝜃 ) 

𝑀

𝑚=1

+
𝜆

2𝑀
 𝜃𝑛

2

𝑁

𝑛=1

 

  

 The gradient in vectorial form is easy to compute: 

𝛻𝜃𝐶𝑜𝑠𝑡 =  
1

𝑀
ℎ 𝑋𝜃 − 𝑌 𝑇𝑋 +

𝜆

𝑀
𝐽𝜃 

 

• In consequence, the learning algorithm is 

𝜃:= 𝜃 − 𝛼
1

𝑀
ℎ 𝑋𝜃 − 𝑌 𝑇𝑋 +

𝜆

𝑀
𝐽𝜃  

 

cdn.shopify.com 

i.pinimg.com 
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Nonlinear classification: motivation 
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 How do we deal with a nonlinear classification problem? 

 𝑦 = 1 in the first and third quadrant 

 𝑦 = 0 in the second and fourth quadrant 

 

 Let us simplify the problem 

 𝑥1, 𝑥2 ∈ {−1,1} 

 𝑦 = 1 for (𝑥1, 𝑥2) = (1,1) or (−1,−1) 

 𝑦 = 0 for (𝑥1, 𝑥2) = (1,−1) or (−1,1) 

 

• If we want to use the logistic regression, we can: 

  Add features that are nonlinear in the original features (𝑥1, 𝑥2) 

 Use the fact that  

 ℎ(𝑧) ≈ 0 for 𝑧 ≤ −5 

 ℎ(𝑧) ≈ 1 for 𝑧 ≥ +5 

 

• Of course, it will only work if we know (or at least suspect) what 

nonlinear features to add 

What features could be good candidates? 

 

𝑦 = 1 

𝑦 = 1 𝑦 = 0 

𝑦 = 0 

𝑥1 

𝑥2 



Solution via nonlinear logistic 
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 Let us try quadratic terms 

 𝑥 = 1, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5 = 1, 𝑥1, 𝑥2, 𝑥1
2, 𝑥2

2, 𝑥1𝑥2  

 

 We need 𝜃𝑇 = 𝜃0, 𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5  such that 

 ℎ(𝑥𝜃) ≈ 1 for (𝑥1, 𝑥2) = (1,1) or (−1,−1) 

 ℎ(𝑥𝜃) ≈ 0 for (𝑥1, 𝑥2) = (1,−1) or (−1,1) 

 

• But we know that this can be translated into 

  𝑥𝜃 ≥ 5 for (𝑥1, 𝑥2) = (1,1) or (−1,−1) 

 𝑥𝜃 ≤ −5 for (𝑥1, 𝑥2) = (1,−1) or (−1,1) 

 

• There are several solutions, but a very simple one is 

 𝜃𝑇 = 0,0,0,0,0,5  

 

• But what if we do not have the intuition for quadratic terms? 

• Or if the quadratic solution did not work? 

We need a systematic way to add extra nonlinear features 

 

𝒙𝟏 𝒙𝟐 𝟓𝒙𝟏𝒙𝟐 𝒉(𝟓𝒙𝟏𝒙𝟐) 

1 1 5 1 

-1 1 -5 0 

-1 -1 5 1 

1 -1 -5 0 

𝑦 = 1 

𝑦 = 1 𝑦 = 0 

𝑦 = 0 

𝑥1 

𝑥2 



What is a logistic unit? 
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 Input 

 𝑥 =
1
𝑥1
𝑥2

 

1 

𝑥1 

𝑥2 

𝑧 
𝜃1 

𝜃0 

𝜃2 

 Weights or parameters 

 𝜃 = 𝜃0, 𝜃1, 𝜃2  

 Blue arrow  product 

𝑎 

 Signal 

 𝑧 = 𝜃𝑥 

 Red ball  sum 

 Activation function 

 𝑎 = ℎ(𝑧) 

 Green arrow  
apply logistic function 

 For simplicity, we will merge the signal 𝑧 and the activation 𝑎 in the red ball 
 

 In Neural Networks jargon, a logistic unit is called a “neuron” 

ℎ 



Combining logistic units 
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1 

𝑥1 

𝑥2 

𝑎1
(2) 

𝑎2
(2) 

𝑎1
(3) 

1 

 Blue arrow  product 

  Red ball  sum and activation 

 

 𝑎(1) =
1
𝑥1
𝑥2

 

 

 𝜃(1) =
𝜃10

(1)   𝜃11
(1)   𝜃12

(1)

𝜃20
(1)  𝜃20

(1)  𝜃20
(1)

 

 

 𝑧(2) = 𝜃(1)𝑎(1) 
 

 𝑎(2) =
1

ℎ(𝑧 2 ) 
 

 

 𝜃(2) = 𝜃10
(2)  𝜃11

(2)  𝜃12
(2)  

 

 𝑧(3) = 𝜃(2)𝑎(2) 
 

 𝑎(3) =
1

ℎ(𝑧 3 ) 
 

 

 

 

Layer 1 Layer 2 Layer 3 

𝜃(1) 

𝜃(2) 



Nonlinear classification example 
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 Let us go back to our example 

 𝑥1, 𝑥2 ∈ {−1,1} 

 𝑦 = 1 for (𝑥1, 𝑥2) = (1,1) or (−1,−1) 

 𝑦 = 0 for (𝑥1, 𝑥2) = (1,−1) or (−1,1) 

 

 Let us divide the problem in 3 logistic units: 

1. First quadrant: “AND” unit 

 𝑎1
(2) = 1 for (𝑎1

(1), 𝑎2
(1)) = (1,1) and zero elsewhere 

2. Third quadrant: “AND” unit 

 𝑎2
(2) = 1 for (𝑎1

(1), 𝑎2
(1)) = (−1,−1) and zero elsewhere 

3. “OR” unit 

 𝑎1
(3) = 0 for (𝑎1

(2), 𝑎2
(2)) = (0,0) and 1 elsewhere 

 

 This can be achieved by choosing: 

 𝜃(1) =
−15 10 10
−15 −10 −10

 

 𝜃(2) = −5 10 10  

 

𝑦 = 1 

𝑦 = 1 𝑦 = 0 

𝑦 = 0 

𝑥1 

𝑥2 

𝒙𝟏 𝒙𝟐 𝑎1
(2) 𝑎2

(2) 𝑎1
(3) 

1 1 1 0 1 

1 -1 0 0 0 

-1 1 0 0 0 

-1 -1 0 1 1 



General shape of a Neural Network 
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𝑥1 

𝑥2 

𝑥𝑁 

𝑎1
(2) 

𝑎2
(2) 

𝜃(1) 𝜃(2) 

 We have 𝐿 layers 

 1 input layer 𝑙 = 1, 1 output layer 𝑙 = 𝐿 and 𝐿 − 2 hidden layers 1 < 𝑙 < 𝐿 

 The network is called deep learning if there are multiple hidden layers (3 or more hidden layers) 

 In Layer 𝑙 we have 𝑠𝑙  units or neurons (not counting the bias unit) 

 𝑎𝑖
(𝑙) is the activation of the 𝑖-th unit in Layer 𝑙 

 𝑎(𝑙) = ℎ(𝑧(𝑙)) 

 𝜃(𝑙) is the matrix of weights for the transition from Layer 𝑙 to Layer 𝑙 + 1 

 𝑧(𝑙+1) = 𝜃(𝑙)𝑎(𝑙) 

 It has size (𝑆𝑙+1) × (𝑆𝑙 + 1) (counting the bias unit) 

 

 

 

𝑎𝑠2
(2) 

⋮ ⋮ 

⋯ 

𝑎1
(3) 

𝑎2
(3) 

⋮ 

𝑎𝑠3
(3) 

𝑎1
(𝑙) 

𝑎2
(𝑙) 

𝑎𝑠𝑙
(𝑙) 

⋮ 

⋯ 

𝑎1
(𝑙+1) 

𝑎2
(𝑙+1) 

⋮ 

𝑎𝑠𝑙+1
(𝑙+1) 

𝑎1
(𝐿) 

⋯ 

⋯ 

⋯ 

⋯ 

𝜃(𝑙−1) 𝜃(𝑙) 𝜃(𝐿−1) 



Cost Function 
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• The cost function to use is the same as in logistic regression 

𝐶𝑜𝑠𝑡 𝜃 = −
1

𝑀
 𝑦𝑚 log ℎ 𝑥(𝑚); 𝜃 − (1 − 𝑦𝑚) log(1 − ℎ 𝑥(𝑚); 𝜃 ) 

𝑀

𝑚=1

 

  

 However, here the function ℎ 𝑥(𝑚); 𝜃  is not a simple logistic but the result of compounding several layers of 

logistic units: 

 𝜃 represents the vector of all weights 

 𝜃 =

𝜃 1 (: )

𝜃(2)(: )
⋮

𝜃(𝐿−1)(: )

  where 𝜃 𝑙 (: ) is the “unrolled” vector version of the matrix 𝜃 𝑙  e.g. 

• In the case of regularisation, the cost function becomes 

𝐶𝑜𝑠𝑡 𝜃 = −
1

𝑀
 𝑦𝑚 log ℎ 𝑥(𝑚); 𝜃 − (1 − 𝑦𝑚) log(1 − ℎ 𝑥(𝑚); 𝜃 ) 

𝑀

𝑚=1

+
𝜆

2𝑀
   [𝜃𝑖𝑗

𝑙 ]2
𝑆𝑙+1

𝑗=1

𝑆𝑙

𝑖=1

𝐿−1

𝑙=1

 

 

• The very nonlinear nature of ℎ 𝑥(𝑚); 𝜃  complicates the task of calibrating the parameters 𝜃: 

 There can be thousands of partial derivatives (esp. true for deep learning) 

 There can be multiple local minima, making the numerical solution dependent on initial conditions 

1 2
3 4

→

1
2
3
4

 



Forward propagation 
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• We start with a given set of weights 𝜃 =

𝜃 1 (: )

𝜃 2 (: )
⋮

𝜃(𝐿−1)(: )

 and an input 𝑎(1) =

𝑥1
𝑥2
⋮
𝑥𝑁

 

• We then propagate the values all along the network: 

𝒛(𝒍+𝟏) = 𝜽(𝒍)𝒂(𝒍)  … (𝟏) 

𝒂(𝒍+𝟏) = 𝒉 𝒛 𝒍+𝟏 …(𝟐) 

• We end with the output 𝑦  of the network, which we can compare to the real output 𝑦: 

𝒚 = 𝒂(𝑳)  … (𝟑) 

 

𝑥1 

𝑥2 

𝑥𝑁 

𝑎1
(2) 

𝑎2
(2) 

𝜃(1) 𝜃(2) 

𝑎𝑠2
(2) 

⋮ ⋮ 

⋯ 

𝑎1
(3) 

𝑎2
(3) 

⋮ 

𝑎𝑠3
(3) 

𝑎1
(𝑙) 

𝑎2
(𝑙) 

𝑎𝑠𝑙
(𝑙) 

⋮ 

⋯ 

𝑎1
(𝑙+1) 

𝑎2
(𝑙+1) 

⋮ 

𝑎𝑠𝑙+1
(𝑙+1) 

𝑎1
(𝐿) 

⋯ 

⋯ 

⋯ 

⋯ 

𝜃(𝑙−1) 𝜃(𝑙) 𝜃(𝐿−1) 



Backward propagation 
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• By the chain rule 

𝜕

𝜕𝜃𝑖𝑗
𝑙
𝐶𝑜𝑠𝑡 𝜃 =

𝜕

𝜕𝑧𝑖
𝑙+1

𝐶𝑜𝑠𝑡 𝜃
𝜕𝑧𝑖

𝑙+1

𝜕𝜃𝑖𝑗
𝑙

 

• Define 

𝜹𝒊
(𝒍+𝟏) ≔

𝝏

𝝏𝒛𝒊
𝒍+𝟏

𝑪𝒐𝒔𝒕 𝜽 … (𝟒) 

• Therefore 

𝝏

𝝏𝜽𝒊𝒋
𝒍
𝑪𝒐𝒔𝒕 𝜽 = 𝜹𝒊

(𝒍+𝟏)𝒂𝒋
𝒍 …(𝟓) 

 

 We will compute the deltas backwards, starting from 𝑙 = 𝐿. 

𝑎𝑗
(𝑙) 𝑧𝑖

(𝑙+1) 
𝜃𝑖𝑗

(𝑙) 
𝑎𝑖

(𝑙+1) 
ℎ 

• From forward propagation we have: 
 

𝑧 𝑙+1 = 𝜃(𝑙)𝑎(𝑙) 

𝑧𝑖
𝑙+1 = 𝜃𝑖𝑗

(𝑙)𝑎𝑗
(𝑙)

𝑠𝑙

𝑗=1

 

 

𝑎 𝑙 = ℎ(𝑧 𝑙 ) 

𝑎𝑖
𝑙 = ℎ(𝑧𝑖

𝑙 ) 
 

 

 

 

 

 



Delta for final layer 𝐿 
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• In the case of a single example (𝒙, 𝒚) we have 
 

𝐶𝑜𝑠𝑡 𝜃 = − 𝑦 logℎ(𝜃(𝐿−1)𝑎(𝐿−1)) − (1 − 𝑦) log(1 − ℎ(𝜃(𝐿−1)𝑎(𝐿−1)))  
 

 Its partial derivative is 
 

𝜕

𝜕𝜃1𝑗
(𝐿−1)

𝐶𝑜𝑠𝑡 𝜃 = − 𝑦
𝜕

𝜕𝜃1𝑗
(𝐿−1)

logℎ(𝜃(𝐿−1)𝑎(𝐿−1)) − (1 − 𝑦)
𝜕

𝜕𝜃1𝑗
(𝐿−1)

log(1 − ℎ(𝜃(𝐿−1)𝑎(𝐿−1)))  

 

 Let us compute: 

𝜕

𝜕𝜃1𝑗
(𝐿−1)

logℎ(𝜃(𝐿−1)𝑎(𝐿−1)) =
ℎ′

ℎ
𝑎𝑗

(𝐿−1) 

𝜕

𝜕𝜃1𝑗
(𝐿−1)

log(1 − ℎ(𝜃(𝐿−1)𝑎(𝐿−1)) = =
ℎ′

1 − ℎ
𝑎𝑗

(𝐿−1) 

 Using ℎ′ = ℎ(1 − ℎ) and simplifying we obtain 
𝜕

𝜕𝜃1𝑗
(𝐿−1)

𝐶𝑜𝑠𝑡 𝜃 = ℎ(𝜃 𝐿−1 𝑎 𝐿−1 ) − 𝑦 𝑎𝑗
𝐿−1  

 Define 

𝜹𝟏
(𝑳) = 𝒂𝟏

𝑳 − 𝒚 … (𝟔) 

 Using 𝑎 𝐿 = ℎ(𝜃 𝐿−1 𝑎 𝐿−1 ) we obtain 
𝝏

𝝏𝜽𝟏𝒋
(𝑳−𝟏)

𝑪𝒐𝒔𝒕 𝜽 = 𝜹𝟏
(𝑳)𝒂𝒋

𝑳−𝟏  … (𝟕) 



Deltas for general layers 
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 For 𝑙 < 𝐿 we have 

𝜕

𝜕𝑧𝑖
(𝑙)
𝐶𝑜𝑠𝑡 𝜃 = 

𝜕𝐶𝑜𝑠𝑡 𝜃

𝜕𝑧𝑗
(𝑙+1)

𝑠𝑙

𝑗=1

×
𝜕𝑧𝑗

(𝑙+1)

𝜕𝑎𝑖
𝑙

×
𝜕𝑎𝑖

𝑙

𝜕𝑧𝑖
(𝑙)

= 𝛿𝑗
(𝑙+1)

𝑠𝑙

𝑗=1

× 𝜃𝑗𝑖
(𝑙) × ℎ′(𝑧𝑖

𝑙 ) 

 Therefore 

𝜹𝒊
𝒍 = 𝒉′ 𝒛𝒊

𝒍  𝜹𝒋
𝒍+𝟏

𝒔𝒍

𝒋=𝟏

𝜽𝒋𝒊
𝒍 …(𝟖) 

 In vectorial form, using the Matlab operator ".∗ " for element-wise multiplication, (8) becomes 
 

𝜹 𝒍 = 𝒉′ 𝒛 𝒍 .∗ 𝜽 𝒍 𝑻
𝜹 𝒍+𝟏 …(𝟗) 

 

𝑧𝑖
(𝑙) 𝑎𝑖

(𝑙) 

𝑧1
(𝑙+1) 

ℎ 
• From forward propagation we have: 

 

𝑧𝑗
𝑙+1 = 𝜃𝑗𝑖

(𝑙)𝑎𝑖
(𝑙)

𝑠𝑙

𝑖=1

 

 

𝑎𝑖
𝑙 = ℎ(𝑧𝑖

𝑙 ) 
 

 

 

 

 

 

𝑎1
(𝑙+1) 

𝑧𝑗
(𝑙+1) 

𝑧𝑠𝑙
(𝑙+1) 

⋮ 

𝑎𝑗
(𝑙+1) 

𝑎𝑠𝑙
(𝑙+1) 

ℎ 

ℎ 

ℎ 

𝜃(𝑙) 

⋮ ⋮ 

⋮ 



Learning algorithm 

ML - Mauricio Labadie 56 

 Start with a training set 𝑥1, 𝑦1 , … , 𝑥𝑚, 𝑦𝑚 , … (𝑥𝑀 , 𝑦𝑀) 

 Randomly initialise weights 𝜃 

 Initialise gradients ∆𝑖𝑗
(𝑙)= 0 for all layers 𝑙 = 1,… , 𝐿 

 Loop: for every training example 𝑥𝑚, 𝑦𝑚  

 Forward propagation to compute 𝑎(𝑙) for all layers 𝑙 = 1,… , 𝐿 

 Backward propagation to compute 𝛿(𝑙) for all layers 𝑙 = 2,… , 𝐿 

 Update gradients: ∆𝑖𝑗
(𝑙)= ∆𝑖𝑗

(𝑙) +
1

𝑀
𝛿𝑖

(𝑙+1)𝑎𝑗
𝑙  

 Add regularisation (optional but recommended) 

 ∆𝑖𝑗
(𝑙)= ∆𝑖𝑗

(𝑙) + 𝜆𝜃𝑖𝑗
(𝑙) if 𝑗 ≠ 0 

 Update 𝜃 via gradient descent 

 𝜃𝑖𝑗
(𝑙) = 𝜃𝑖𝑗

(𝑙) − 𝛼∆𝑖𝑗
(𝑙) 

 Repeat until convergence 

 Repeat for more random initialisations 

 Keep the value of 𝜃 such that the cost function is the smallest amongst all random initialisations 

 

 

 

 

www.gettyimages.com 



5. Neural Networks 

Example of HFT price prediction 
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Neural Networks are black boxes! 
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 More hidden layers 

 More complicated nonlinear transformations  

 More difficult to interpret the effect of each parameter in the outcome 

 

• You do not fully understand what is going on 

 You cannot explain the “nonlinear factors” the model is picking 

 Like Forrest Gump’s boxes of chocolates:  

 “You never know what you are going to get” 

 It is difficult to audit a neural network model 

 

• You normally hit a local minimum, not the global minimum 

 The local minimum depends on the initial conditions 

 Several random initialisations are needed to get a better local minima 

 

• But the black box approach works!  

 Neural networks have shown their worth in multiple applications 

 Deep learning is impressive 

 Even if its Black Box is actually “darker than black” 
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• Justin Sirignano, “Deep Learning for Limit Order Books”, preprint ArXiv 2016 

 

• In a Model-driven approach we decide the equations and relations governing the dynamics of the system 

 Market orders follow a Poisson process (no-memory) or a Hawkes processes (memory) 

 The Limit Order Book (LOB) replenishes itself at a certain rate 

 The mid-price follows a stochastic process e.g. Ito process, Levy process 

 

• In a Data-driven approach there are no assumptions on the dynamics of the system 

 Conditional probability of future prices given the current state of the LOB 

 Given the volumes and prices of several levels of the LOB at time 𝑡  

 Predict the future best bid and ask prices at time 𝑡 + ℎ 

swisscognitive.ch 

powerlisting.wikia.com 



Discrete LOB model 
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• The LOB model 

 The paper builds a joint distribution of best bid and ask prices at time 𝑡 + ℎ  

 Conditioned on the state of the LOB at time 𝑡 

 10 bid and ask levels of the LOB, including best bid and ask prices 

 

• Adding spacial distribution to neural networks 

 Standard neural networks have outputs on a finite set 

 The paper extends this to an infinite, discrete output set e.g. 𝑍 

 

• Adding “closeness” in the LOB 

 Normally, all samples in a neural network are independent 

 But in reality, if two samples are “close” then they should behave “similarly” 

 The spacial neural networks allows to define a probability notion of “closeness” 

 

• The bid-ask spread is not constant i.e. the bid and ask prices do not move together “in lockstep” 

 For the majority of the NASDAQ stocks, more than 50% time there is no lockstep move 

 For half of the NASDAQ stocks, they move in locksteps only of the17% of the time 
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• Infinite price levels for the LOB 

 Price levels in 𝑍 (zero is best ask price) 

 For classical neural networks it has to be capped e.g. [−50,50] 

 

• Bid and ask price distributions 

 Some research consider them separately and independent 

 But then they need to add a variable for the spread 

 Constant or mean-reverting 

 This paper models bid and ask prices together 

 

• Fixed time horizon of ℎ = 1 second 

 NASDAQ is open from 9:30 to 16:00 

 6.5 hours  23,400 seconds 

 This is enough to calibrate the model on a daily basis 

 In the paper the training sample is 500 NASDAQ stocks over 20 months in 2014-2015 

 

• A 1-second forecast of price moves qualifies as HFT model 
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• Neural networks outperform nonlinear logistic regressions 

 Neural networks have lower out-of-sample error 

 

• The spacial neural network outperforms standard neural networks 

 And there are less parameters due to its local spacial structure (170,000 vs 20,000) 
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• Data Science 

• Machine Learning 

• Cost function 

• Linear regression 

• Training a model 

• Cross-validation 

• Test set 

• Overfitting 

• Bias 

• Variance 

• Regularisation 

• Logistic regression 

• Classification boundary 

• Accuracy 

• Confidence Interval 

• Precision 

• Recall 

• F1 score 

• Single class 

• Multi class 

• One vs All 

• Gradient descent 

• Learning rate 

 

• Logistic unit 

• Nonlinear features 

• Neural Networks 

• Weights 

• Hidden layer 

• Deep Learning 

• Forward propagation 

• Backward propagation 

• Non-convex optimisation 

• Random initialisation 

• Data-driven approach 

 

We do not fear ML jargon anymore 
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 Stanford 

 Coursera MOOC 

 Machine Learning 

 Andrew Ng 

 

 

 

 CalTech 

 Online lectures 

 Machine Learning 

 Yaser Abu-Mostafa 

 Book: “Learning from Data” 

 YouTube videos 

 Neural Networks Demystified 

 Welch Labs 

 

 

Books on Statistical Learning 

 Hastie, Tibshirani et al “Elements of 

Statistical Learning” (Data mining, 

Inference, Prediction) 

 Hastie, Tibshirani et al “An introduction 

to Statistical Learning” (with applications 

to R) 

There is a MOOC associated to them as well 

 

 

 



Thank you for your 

attention 
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