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Disclaimer

Everything I say during these lectures, in written and/or orally:

Www.svsamiti.org
Is my own and personal opinion

Does not represent my employer’s point of view

Does not commit me or my employer to anything ‘

It is meant to be solely for educational purposes

Does not constitute any kind of investment advice

RGN NEN
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References on Machine Learning
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» Neural Networks Demystified
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@ ML - Mauricio Labadie /




Am | qualified to give these lectures?

e Of course

®  Because I have this!

Stanford | ONLINE cousse

| approve!

oif13/2018

Mauricio Labadie

Machine Learning

an online non-credit course authorized by Stanford University and offered through
Coursera

wikipedia.org

#einsteinapproves

®  OK Seriously, this MOOC is very good and I highly recommend you to take it
» Itis free... unless you want to have this diploma in LinkedIn :P

> T have no commission if you sign up :P
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Definitions of Machine Learning

®  The term “Machine Learning” (ML) was coined in 1959 by Arthur Samuel
» He defined ML as a field of Study
> that gives computers the ability to learn

»  without being explicitly programmed

¢  There is another ML definition from Tom Mitchell in 1998
» He defined ML as a well-posed learning problem:
» A computer program is said to learn from experience E
» with respect to some task T
» and some performance measure P
» ifits performance onT

» as measured by P

» improves with experience E Experience E

!

Task T | =) | Performance P | ) | TaskT | =) | Performance P1

P1>P
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Data Scientist = do a MOOC?

DATA
SCIENTIST

So what are the main differences
between Actuaries and Data Scientists?
NEW KID ON THE BLOCK

ACTUARY Vs

OLD SCHOOL
Has been playing Relatively new
with data for profession
hundreds of years e
EXAMS INFORMAL LEARNING
Do a MOOC,
Years of exams & ]%’, Q becst:»crire\:]taisli)!:!ata
study
INSURANCE &
PENSIONS GURU JACK OF ALL TRADES
Yet to widely N\ - Start-ups,
t t th internet firms,
penccas oter (Y € By i

BUSINESS RISK

Strong focus on
regulation,
flnance risk and

|nvestment

MODELLER
9 Core job is
% predictive
E modelling

MACHINE LEARNING

% random forests
etc

STATISTICAL MODELLING

Generalised Innear
models etc

Created by:

Mark Farreil PhD Fi

https:. //uk.llnkedm com/in/markfarrellactuary
www.proactuary.com
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Neural networks,

New kid on the block?

» Mathematical tools from at least 1700s (Newton,
Lagrange, Legendre, Cauchy, Bayes)

Informal Learning?

» Requires at least undergraduate level in Probability,
Statistics, Linear Algebra, Multivariate Calculus,

Numerical Methods and Programming

Jack of all trades and modeller - OK

» Mathematics has always been the language of Science and

Economics

» The new “universal language” is now data analysis:

crunching numbers and separating data signals from noise

Machine Learning?

» ML is useful, but it is NOT the only way we deal with data

» Actuaries do Machine Learning too!

Linear regression is Machine Learning!

/
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"Everybody can fit, but the ability to deal with overfitting is what
separates prqfessionals from amateurs in Machine Learning.”

Yaser Abu-Mostafa, CalTech

®  The biggest minds in Machine Learning and Al are all PhDs:
» Andrew Ng — PhD (@ Berkeley
> Yaser Abu-Mostafa — PhD (@ CalTech
» Yann LeCun — PhD (@ UPMC

*  The biggest companies in Al are led by PhDs:
» Deep Blue (beat Chess champion Kasparov)
Murray Campbell — PHD @ Carnegie Mellon
» Deep Mind (beat Go champion)
Demis Hassabis — PhD (@ University College London
» Open Al (beat the DOTA 2 champion 1v1)
Ilya Sutskever — PhD (@ University of Toronto

@ ML - Mauricio Labadie
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Data Science and the Scientific Method

® Data gathering

»  Before Big Data this was very complicated

» Now Big Data makes this much easier (but not trivial)

e Data cleaning and labelling

» This requires deep insight and knowledge of the problem RE s E A RCH

» For example, removing outliers and re-scaling variables

®  Choice of the model _}JQPQ—J—‘_}—I:JSJS

> Inputs: parameters, Variables, etc Predict what the answer to the problem is.

A EXPERIMENT

> Outputs: performance/ €rror measure

®  Separating the data in subsamples

NS T L t = B B B E B G —
P =' ANALYSIS
» Cross Validation set (optional) — Recod i happened during the e;(perimeni.
» Test set

‘, CONCLUSION

images.carsondellosa.com
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Training, Cross-validation and Test

Training set
» In-sample data
»  We can do whatever we want in this set to improve the model
» This is where we calibrate the parameters

» In other words, where the “machine learns”

Cross-Validation set
> “In-sample bis” or “pre-out-of-sample”
» It is used to compare different models
» E.g. choosing the degree of a polynomial linear regression

> We treat this set as a pre-test set

Test set
> Out-of-Sample
> This is where we evaluate the chosen model

> Ttis generally used to compute the accuracy of the model

Rule of thumb for a data set
» 70% training, 30% test

» 60% training, 20% cross-validation, 20% test

@ ML - Mauricio Labadie Google images
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Overfitting: definition

The goal is to approximate the “true” objective function f (x)

»  We assume there is a pattern, otherwise there is nothing to do

We start with a family of possible functions

»  For example, linear functions (Linear Regression)

Let us denote the family as h(x; )
» X are the features

> 9 are the parameters

We need to decide what kind of approximation we want
» Do we want to be very good in the Training set?
» Or to have comparable errors in Training and Validation sets?

»  We cannot have both in general, unless we compromise

Very good in—sample is not always a blessing

> By forcing a very high accuracy in the Training set we could be

sacrificing predictive power on the Test set
» In other words, we could be fitting the noise, not the signal

» This is known as overfitting

@ ML - Mauricio Labadie
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Overfitting: bias and variance

We need to choose the right model
» Too simple 9underfitting

» Too complex - overfitting

High bias > underfitting
» The errors in Training and Validation are comparable
The model performs well
~ But the errors are too high in the Training and Validation sets

The model cannot do better with the current complexity

High variance > overfitting
» The error in the Training set is small
But the error in the Validation set is big
»  We need to give up some accuracy on the Training set

So we can reduce error in the Validation set

Rule of thumb for “sweet spot” of model complexity:

» Number of features < number of samples /10

@ ML - Mauricio Labadie

Under-fitting
(too simple to

explain the
variance)

Error

Appropriate-fitting

Over-fitting

(forcefitting - too
good to be true)

vitalflux.com

High Variance

Validation Error

Training Error

Model Complexity

www.learnopency.com
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2. Linear Regression
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Linear regression explained

*  We start with a real-valued objective

> YER

¢ That can be described with N features

> x=(1,xq1, ..., Xp)

®  Assume that a linear combination of the features

> 00+01x1+“'+9NxN =x0

* Can approximate the objective

> x0 =y

e Givenasetof M samples and their respective objectives

L (@ D) (@ @Y (D )
(W, y®), (x®,y @), ..., (x40, y 1)

algo-trades.com

®  We want to find the parameters that better approximate the objective

6o
> 0= 9:1 > xMp ~yM foral m=1,..,M
On
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Defining the cost function

®  Define the Cost function as the error between the objective and our approximation
M

Cost(0) = % Z (h(x™;0) — y(m))2

m=1

* Recall that h(x (m); 0 ) = x(Mg , hence

M
1
Cost(0) = i z (xMmo — y(m))2
m=1

o Let us write the equation in vectorial form. If we define

1 x, @D o xy @ y@®
¥ = .1 xl.(z) x”.(Z) vy = y@
1 @™ e xy ™M) y (D)

cdn?.content.compendiumblog.com

®  Then

Cost(60) = % (X0 —VT(X6 -Y)
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Minimising the cost function

We just wrote the cost function as

Cost(0) = %(XH -NTXH-Y)

* If we want to minimise the Cost we need to compute its gradient 14
1

VgCOSt(Q) =MXT(X9 —Y) 0'95_;

09-

— :
& 085+
<= :

®  Making Vg Cost(8) = 0 we found the optimal parameters
0=X"X)"1xTy
Let us see that @ we just found is a global minimum:

1
> The Hessian (matrix of second derivatives) is H = EX X

> It is positive-definite because for any vector W # 0 we have

1
wlHw = M(XW)T(XW) > 0

@ ML - Mauricio Labadie /
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200
150
100

a0

Overfitting a linear regression

F(x)=1+x+x?+x3

Explicit function with random perturbation

— Objective Function
R’ Vale
O Value + Error

-3 -2 -1 0 1 2 3 4

e  We have 10 samples and we use a lO—degree polynomial to fit

e  We are not following our rule of thumb:

» Number of features < number of samples /10

@ ML - Mauricio Labadie
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50

Example of overfitting

-50
QO  Objective
~1009 Degree 1
Degree 3
Degree 10
_-150 | | 1 1 1 1 1 1
-5 -4 -3 -2 -1 0 1 3 4
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Fixing overfitting: regularisation
We add a penalty to the cost function to “force 68 to be small”

M N
1 A
COSt(Q) = W Z (h(x(m), 9) - y(m))Z + W 2 an
m=1 n=1

Define J as the identity matrix but with a zero in its first entry: \
00 - 0 exclude 8
j=19 10
O 0 --- 1
Then
Cost(0) = L X6 -Y)T(X0-Y) + A Jerye)
2M 2M
The gradient is
1 T A
VgCost(0) = MX (X6-Y) + M]Q
Therefore

0 =X"X+A)XTY

The regularisation will make it harder for h(x; 6) to take very convoluted shapes
> Smoother shape - Reduced variance

> « . ”»
Less is more

@ ML - Mauricio Labadie

cdn.shopify.com

/




3. Logistic Regression
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Logistic regression explained

Logistic function hiz) = 1/ (1 + exp(-z))

We start with a binary objective

~ y €{0,1}

That can be described with a number of features =

»ox=(1,xq1, ., Xy)

Assume that a linear combination of the features

> 00+01X1+"'+6NXN =x0

09
Together with a logistic function o
07k

» z-h(z) € (0,1) 06}
X os5f

04r

Can approximate the probability of the objective

01

03F

> h(x8) = Ply =1] 02t

2

1
=il

1 1 1 1 1 1
-1 0.5 0 0.5 1 15 2

We want to find the parameters that better approximate the probability of the objective

6o
;9= IHJ > h(x™6) ~ P[y'™ =1] forall m=1,..,M
On
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Classification boundaries

z=1+0.5*x1—0.5*x2 z=1+2*x1—3*x2

h(z)

ML - Mauricio Labadie
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3000

2500

2000

1500

1000

500

400

300

200

100

Example: “toxicity”

Distribution of toxicity

| L
20 40 60 80 100 120 140

Excluding 1% outliers

@ ML - Mauricio Labadie

of trades

We label trades based on execution costs:
“Good” if the cost is lower than expected

“Toxic” if the cost is higher than expected

To determine the label, for each trade we have defined a

metric called “toxicity”
> Good ifToxicity <1

> Toxicif Toxicity > 1

Why this is important?

“Good” trades can be executed with simple
algorithms (e.g. VWAP)

“Toxic” trades require sophisticated executions (and

probably human intervention)

Goal:

Build a classification model that, given a trade,

will label it as Good or Toxic
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8

Preparing the data

[ 122816 table *  Five features to explain “Toxicity” of a trade
1 2 3 4 5 6
VolatilityPct SpreadBps AdvPct Factorl Factor2 Toxicity
1 16.1659 8.4360 03774 09118 10275 15519
2 17.3522 £.2469 12605 20551 10275 -1.0618 o Train set
3 15,6961 £.9970 32743 07892 10275 09216
4 228170 6.5632 31146 0.7892 10275 -1.3854 » 60%i.e. 7,369 samples
5 15,2506 69724 21265 08743 10275 -1,6234 ,
6 17.6174 66135 3121 08743 1.0275 29291 » Here we calibrate the ML model
£ 22,3882 64957 40615 08743 10275 03520 »  Optimal parameters for the logistic regression
8 20,0119 66200 03403 08743 10275 19252
] 15.3866 6.0107 45123 08743 10275 -0,0434
10 15.7958 53956 0.5968 08743 10275 21466
11 20.2320 6.0577 17850 08743 10275 -1.2878 ®*  Cross-validation set
12 17.8535 61534 3.5647 08743 10275 -1.3685 )
13 14.1365 6.2211 3.0045 08743 10275 -0.3788 » 20%i.e. 2,456 samples
= 155020 6.2357 35233 0.8743 1.0275 0.7334 » Here we pick the optimal threshold for the
15 19,5245 10,0757 32914 08743 10275 -0.2846 o '
16 18,8058 10,0023 49634 08743 1.0275 0.2295 10g15tlc regression
17 18.8058 10,0923 52615 08743 10275 0.5499
18 16,0946 £.2299 29995 -0.2582 10275 35644
19 15.3196 9.3494 89541 -0.2582 10275 -0.2809 o Tost set
20 16,6556 79850 13000 10135 10275 10134

» 20%1i.e. 2,456 samples

» Here we only check the accuracy of the model

ML - Mauricio Labadie




Training the ML model

®  Preparing the data
¥ good = vecToxicity < 0;

» T}ansﬁnTnjbxuntylntolxxﬂeans ¥y neutral = vecToxicity >= 0 & wecToxicity <« 1.5;

» Normalise the variables 0 CEEIE = TEENTEEIENED 2= L-d-

Substracting the mean

Dividing by range, either max-min or std dev

° Training the ML model

theta, dev, stats] = g it (mtxData,y traim, 'binomial', 'link', 'probit'}:
[th d 1 Imfit( D i i 'bi ial',"link'," bit')

» Itis just one line of code!

R L
Predicting outcomes based on the ML model x = [ones (size (mtxData,1),1),mtxData] * theta:

» Compute the logistic with the calibrated parameters h=1./ {1+ expi(-x));

. .. threshold = 0.5;
*  Compute the accuracy of the model in the training set
vecPred = h > threshold;
accuracylrain = mean(vecPred == y_train)

ML - Mauricio Labadie
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Training for Good

Training for Good | Threshaold 0.8 | Accuracy B9 1546 % E G2 table
I:IB T T T T T T T T T
o 1 2 3
o7l & i feature theta pvalue
- @ 1 'Mone' -0.4953  4,3030e-228
0eL o | 2 'VolatilityPct' -0,0170 0.3586
3 'SpreadBps’ 0.0430 0.0186
0Aat+- = 4 AdvPct 00134 0.4147
5 'Factorl' -0,1683 T.0431e-23
0.4 T 6 'Factor?' -0.0247 01060
03+ .
02k @ﬁ - *  Features that matter (p-value < 0.05):
o= » None
01t - .
Js o » SpreadBps
1] ] ] 1 ] ] ] ] 1 1 ” Factorl

® Features that we can ignore:
> VolatﬂityPct
» AdvPct

» Factor?

@ ML - Mauricio Labadie
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Cross-validation for Good

@ ML - Mauricio Labadie

Pick optimal threshold that maximises
accuracy:

> 0.49and 0.5

I love symmetry
» Hence I choose 0.5

static7.depositphotos.com
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Test for Good: we are done, right?

Test for Good | Threshald 0.5 | Accuracy B9.1546 %

0.8 ' ' ' ' ' ®  This result seems OK
. > 69% accuracy
07k o -
5 » Better than random coin tossi.e. 50%
0EI T
®  Better than 2/3 of chance
05| 1 |
> In line with the accuracy in the training
seti.e. 69%
0.4F .
03F
02F o
o o
o
I:I'I 1 1 1 1 1
-2 -1.5 -1 -0.5 1] 0.5

pixtastock.com - 19647846
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1200 . . . Disltrihumnl of logisltic : , , Only 2% of samples have h > 0.5
1000
500 We know that around 33% of samples are good
Around 67% accuracy by predicting “not
600 good”
400
200 Using h=1

We predict all samples are not good

So a constant prediction is as good as our
sophisticated ML model?

<Sarcasm>

Thank you ML, you are so useful!

</sarcasm>

350

300
250
200
150
100

We need to change our approach

50 . . . .
ML is a continuous iterative process

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

ML - Mauricio Labadie
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Choose the threshold differently

Let us compare our predictions vs the actual values:

Actual
1 0
True False

o | —
%) Positive Positive
%‘ W
o False True
oW - . .

Negatlve Negatlve

We will use the F1-Score

True Positives

> Precision P = - —
Predicted Positives

True Positives

> Recall R = —
Actual Positives
PR
> F =2—— ,
P +R www.anc1entpages.c0m

Choose the threshold in cross-validation that maximises F

@ ML - Mauricio Labadie




Comparing Accuracy and F1 Score

Cross-validation for Good | Best Accuracy Threshold 0.9 | Accuracy 66.9788 %

L 'l 1 L A1 1 L

0z 03 04 0.5 0.6 0T 0.6

Threshold

@ ML - Mauricio Labadie

01 0.9
Threshold
- Cross-validation for Good | Best F1 Threshold 0.11 | F1 Score 0.4954
04 4
5 03 E
o 02f 1
0.1 - -
i 02z 03 0s 05 06 o7 08 09
Threshold
0o Cross-validation for Good | Best Acc + F1 Threshald 0.41 | Acc + F1 0.83537
[Lﬁ . -
L 08f b
4+
2 omsp .
0.7 4
Mij 02 03 0.4 05 0.6 07 08 0.9

Best accuracy is for threshold = 0.9

> But we are almost predicting all samples are

not Good,i.e. h =1

Best F1 score is for threshold = 0.11:

» But we are almost predicting all samples are

Good,i.e.h =0

What if we add Accuracy and F1 score?

»  We are trying to predict well without being
eitherh=0orh=1

» Best threshold is 0.41
v Accuracy is 49%
v" F1 Score is 0.33

v It is around the median for h
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Test for Good 2: nailed it already?

Test for Good
I:IB T T T

e This result seems better than the previous

0.7

0.&

0.5

0.4

0.3

0.2

0.1+

one:
» Lower accuracy: 49%

» Random choice of Good, Neutral and
Toxic is around 33%

> 95% confidence assuming Bernoulli is

1 ,O.33*O.67
T 0
| v 1.96 * ate 2%

* In general terms, the in-sample accuracy
should be similar to out-of-sample accuracy

@ ML - Mauricio Labadie
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Logistics for multi-class problems

e We know how to deal with binary classifications
> Good
» Neutral

» Toxic

®  But what if we have multiple classes?
» Toxicity: Good, Neutral, Toxic
»  Number recognition: 0,1,2,3,4,5,6,7,8,9
> Chess: pick which piece to move
» MMORPGs: pick what spell/skill to use

Maximise DPS, aggro, defence, heals, etc

¢ The philosophy of the One vs All approach

»  We already have the sing]e—class logistics

http: / /assets1.ignimgs.com

»  We can compare them all and pick the best
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One vs All: from single logistics ...

We choose Good, Neutral and Toxic based on 33% quantiles of toxicity

¥ good = wvecToxicity < O;
y neutral = vecToxicity »>= 0 & vecToxicity < 1.5;
¥_toxic = wvecToxicity »= 1.5;

We run 3 logistic regressions, one for each class type

% calibration

[theta good, dev_good, stats_good] = glmfit (mcxData,y good, 'binomial', "link', 'prokic');

[theta neutral, dev_neutral, stats_neutral] = glmfit (mtxData,y neutral, 'binomial', "link’', 'probit');
[theta toxic, dev_toxric, stats_toxic] = glmfit (mcxData,y toxic, 'binomizl®, "link', 'probit'):

This gives us 3 sets of optimal parameters for the 3 logistics

1 2 3 4
feature theta_good theta_neutral theta_toxic
'‘Mone' -0.0074 -6.9571e-04 0.0074
‘VolatilityPct' -0.0134 0.0278 0.0134
‘SpreadBps’ 01102 -0.0083 -0.1102
‘AdvPct’ 00118 0.4495 -0.0118
'Factorl’ -0.1854 -0.0187 01854
'Factor2' -0.0273 -0.0022 0.0273
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... To the best outcome

®  We have computed 3 logistic regressions
» Good
» Neutral
» Toxic

e  We now apply the One vs All method:

» Label each sample based on the highest logistic value

% prediction

theta = [theta good, theta neutral,theta toxic];
x = [one=s(=size (mtxData,l),1l),mtxData] * theta;
X = sort(x):;

h=1./f (1 + exp(-x)):

¥ 1 vs all

[~,class _pred] = max(h, [],2):

® Here we do not need to calibrate the threshold for classification

» Only need Train set and Test set, no Cross-validation set

@ ML - Mauricio Labadie

www.tes.com




e

One vs All: comparing logistics

Comparing logistic regresions for single-class ® Let us focus on only one feature
1 1 1 T T T
o © > For example, Factorl
03r o ] » Make zero all other factors
08 -
- . ) 1 .
07 o Good If Factor1 increases then:
0l g [l‘_aleu.tral ] > Less likely to be a good sample
oHIE > More likely to be a toxic sample
0sF -
o o4 » Neutral is more or less invariant
04r -
03r § ®  We could try again without the Neutral class
0ok 4 » Homework!
|:|1 B D ':::' _
C oo
I:I 1 1 1 1 1
-10 -5 0 5 10 15 20

! p - 1Y T e
. - Vas "4.". "‘, N
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One vs All: Results

Accuracy Confidence Interval 95% Significant
Error [Lower Bound [Upper Bound
Train Set| 37.88%]( 1.14% 36.73% 39.02% Yes
Test Set | 37.66%]( 1.40% 36.26% 39.06% Yes

* Did we succeed in the ML model for toxicity?

® Statistically speaking, yes

» Predictive power (in-sample and out-of-sample) above 33% with 95% confidence

® Butin practice, is this model good enough to trade real money?

> But we could do much better if we work the model a bit more

®  What can be done?
> Use regularisation to compute the optimal parameters

» Add more features

* If you do not know what features to add, use Neural Networks (tomorrow)

@ ML - Mauricio Labadie
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4 ™
Gradient Descent explained

*  What happens if we do not have a closed-form solution of the

parameters?

»  We need to find the minimum numerically

*  Gradient Descent for a function C'(80)

> Move in the direction where C(8) has fastest decrease

» Thatis =V C(0)

We will move in the parameter space at a given learning rate

» B(k+1)=0(k) —aVC(8(k))

ludovicarnold.altervista.org

Sometimes it is written as a “programming update”

> 0:=0—aVC(0)

v level sets of

—3 gradient update
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Gradient Descent and convergence

The learning algorithm for gradient descent, we just found, is

> 0:=0— CZVC(Q) qph.ec.quoracdn.net

e Initial condition is important
»  Esp. when the cost function is not convex

»  We could converge towards a local minimum instead

» This is one of the biggest headaches in Neural Networks

° Learning rate is important
»  Small learning rate could take ages to converge

»  Big learning rate could “overshoot” the target and diverge Big learning rate Small learning rate

° Rule of thumb:
> Plot C(8(k)) vs iteration k to check if it is decreasing

media.licdn.com
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Gradient Descent for logistic regression

For Logistic Regression, the cost function we will use is
M

Cost(9) = _1 y™logh(x™@) — (1 — y™)log(1 — h(x(™8))
M

m=1

This cost function is convex in h(x (m) 9) and has a unique global minimum.

If we compute the partial derivatives, using ' = h(1 — h) we obtain

M

dCost 1

0 =W z (h(x(m)e) — y™) x,, (™
n m=1

Coincidentally, this is the same derivative form for the Linear Regression, but different h(x m)g )

In vectorial form

1
VgCost = MXT(h(XH) -Y)

In consequence, the learning algorithm is

0:=0 — a%XT(h(XH) —-Y)

y " % > b 5 ,’»"
@ ML - Mauricio Labadie s A Y
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Gradient Descent with regularisation

®  We just add the regularisation term, as before

M N

) 2

Cost(8) = — = z [y™ log h(x™6) — (1= y™) log(1 — h(x™6)) | + - Z O
£ n=1

e The gradient in vectorial form is easy to compute:

1 A
= — —_ T _—
VgCost M (h(X0)—-Y)'X + M ),

® In consequence, the learning algorithm is

0:=06 1 h(X6 X A )
= —alﬁ(( )—Y) +M]]

i. pinimg. com

- /i cdn.shopify.com

|

4
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Nonlinear classification: motivation

How do we deal with a nonlinear classification problem?
» ¥ = 1 in the first and third quadrant
» ¥ = 0 in the second and fourth quadrant

Let us simplify the problem

> Xxq1,%y € {—1,1}

» y = 1for (xq,x3) = (1,1) or (—1,—-1)
» y=0for(xq,x3) =(1,—1)or (—1,1)

If we want to use the logistic regression, we can:
> Add features that are nonlinear in the original features (X1, X3)
» Use the fact that
h(z) = Oforz < =5
h(z) = 1forz = +5

Of course, it will only work if we know (or at least suspect) what

nonlinear features to add

> What features could be good candidates?

@ ML - Mauricio Labadie
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Solution via nonlinear logistic

Let us try quadratic terms

_ _ 2 .2
»ox = (1,x9,%9,X3,X4,x5) = (1, %1, X5, %1%, X%, X1 X3)

We need 9T = (00, 01, 02, 63, 64,, 65) such that
> h(x0) = 1for (x1,x3) = (L,1) or (—1,-1)
> h(x0) = 0for (x1,x3) = (1,—1) or (—1,1)

But we know that this can be translated into
» x0 = 5for (x1,x3) = (1,1) or (—1,-1)
» x0 < =5for (x1,x) = (1,—1) or (—1,1)

There are several solutions, but a very simple one is

» 6T =(0,0,0,0,0,5)

But what if we do not have the intuition for quadratic terms?

Or if the quadratic solution did not work?

> We need a systematic way to add extra nonlinear features

ML - Mauricio Labadie
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What is a logistic unit?

e Activation function

° Signal

° Weights Or parameters » Z=0x > a= h(Z)
° Input > 8 =1[6, 64, 0,] > Red ball 2 sum > Green arrow - .
apply logistic function
1 >  Blue arrow = product
o X=X
X2

®  For simplicity, we will merge the signal Z and the activation @ in the red ball

® In Neural Networks jargon, a logistic unit is called a “neuron”
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Combining logistic units

Layer 1 Layer 2 Layer 3

@ ML - Mauricio Labadie
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Blue arrow = product

Red ball 2 sum and activation

1
a(l) = xl
X2
o) — 6,07 61,V 912(1)]
| 0507 0,07 8,0
2@ — g ()

a(z) =

)|
h(z®)
9@ = [910(2) 911(2) 612(2)]

2,3 — @,

@ =[0
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Nonlinear classification example

® Letusgo back to our example

> X1, Xy S {—1,1}
» y=1for (x1,x) = (1,1) or (—1,-1)
» y=0for (x1,x) =(1,—1) or (—1,1)

® Let us divide the problem in 3 logistic units:
I, First quadrant: “AND” unit
aq @) =1 for (a4 @, a, (1)) = (1,1) and zero elsewhere
2. Third quadrant: “AND” unit
a,® = 1for (a; W, a,(W) = (=1, —1) and zero elsewhere
3. “OR”unit
a; ®3) =0 for (a4 @), a, (2)) = (0,0) and 1 elsewhere

®  This can be achieved by choosing:

Ceo-[lf 1 B

> 03 =[-5 10 10]

ML - Mauricio Labadie
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General shape of a Neural Network

g(L—1)

We have L layers
> linputlayer [ = 1,1 output layer | = L and L — 2 hidden layers 1 < [ < L
> The network is called deep learning if there are multiple hidden layers (3 or more hidden layers)

In Layer [ we have $; units or neurons (not counting the bias unit)
a; D is the activation of the i-th unit in Layer [

> a(l) = h(z(l))

0 is the matrix of weights for the transition from Layer [ to Layer [+1
> Z(l+1) = H(I)a(l)

» Tthassize (S;41) X (S + 1) (counting the bias unit)
ML - Mauricio Labadie
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Cost Function

The cost function to use is the same as in logistic regression
M

Cost(0) = —% [ym log h(x(m); 9) —(1—y™)log(1 — h(x(m); 9)) ]

m=1

* However, here the function h(x m). g ) is not a simple logistic but the result of compounding several layers of
logistic units:

e 0 represents the vector of all Weights

oW ()

1
e 0= 9(23(: ) where 9(1)( ) is the “unrolled” vector version of the matrix W e, g 3 4] - lg‘
Q(L—l)(:) 4
®  In the case of regularisation the cost function becomes
1 L=1 S; Sit1
Cost(0) = —— Z [y™log h(x(™);0) — (1 — y™)log(1 — h(x™;0)) | + o Z Z 6;, V12
[=11i=1 j=1

®  The very nonlinear nature of h(x (m); 7] ) complicates the task of calibrating the parameters 0.
> There can be thousands of partial derivatives (esp. true for deep learning)

> There can be multiple local minima, making the numerical solution dependent on initial conditions
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2. x

®  We start with a given set of weights 8 = b ) ) and an input a® = l 52
X

Forward propagation

H(L_.l)(:) N

®  We then propagate the values all along the network:

zD = gWa®d (1)
a®D = (D) . (2)

®  We end with the output J of the network, which we can compare to the real output y:

y=ab . (3)

ML - Mauricio Labadie

g(L—1)




e
Backward propagation

®  From forward propagation we have:

o
0 h L0+D = g0 O
S1
2,041 — Z 0,V a;®
=1
a® = h(z®)
a;") = h(zV)

By the chain rule

(1+1)
———Cost(0) = Cost(@)—
eij(l) 07z (l+1) aQU 0]
®  Define
d
(+1)
o; = Ao Cost(0) ...(4)
¢ Therefore

7, — ——Cost(9) = §;""Pa;V .. (5)

®  We will compute the deltas backwards, starting from =1L
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Delta for final layer L

In the case of a single example (X, y) we have

Cost(9) = —[ylogh(8®Val=D) — (1 — y)log(1l — h(0L " Val-Dy) |

o ts partial derivative is

Cost(8) = — log(1 — h(%~Dagl-DY)

0 0
- C-D)a-DYy (1 - y) ——
691 '(L—l) logh(e a ) (1 y) aglj(l'_l)

Y oq @D
j 691]-

e Letus compute:
hl
— losh(8@"Dgl-Dy = _4.L-1)
691]'(L_1) o8h( “ ) h “
h/

log(1 — h(8¢"Dal—D) = = 7

- (L-1)
26, -1 4

Using ' = h(1 — h) and simplifying we obtain

wCost(@) = [h(g(L—l)a(L—l)) _ y]aj(L—l)
06, ;

Define
61(L) = al(L) -y ... (6)

Using a® = h(Q(L_l)a(L_l)) we obtain
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Deltas for general layers

®  From forward propagation we have:

S1

2,0+ = Z MOPAO

i=1

a; Y = h(zW)

For | < L we have

S
_ Z 5,V x 0,0 x 1 (2,0)
=1

L 9Cost(6) oz;(*D  9q;®

4 aZj(l+1) % aai(l) vai(l)
j=1

Cost(0) =

aZi(l)
Therefore
s
l I} 1+1 l
80 = (z®) ) 80,0 .. (8)
=

J

In vectorial form, using the Matlab operator ".* " for element-wise multiplication, (8) becomes

80 = B'(z0).« (8®) 8+ __(9)

ML - Mauricio Labadie




e
Learning algorithm

*  Start with a training set (x*, y1), .., (x™, y™), ... (x™, y™)
* Randomly initialise weights 6
> Initialise gradients A;; (V= 0 for all layers | = 1, ..., L
» Loop: for every training example (x™, y™)
v Forward propagation to compute a¥) for all layers [ = 1, ..., L

v Backward propagation to compute 5O for all layers | = 2, ..., L
A DA e (D) (1
v Update gradients: A;;~/= A;;* + Y &; a]( )
»  Add regularisation (optional but recommended)
v Al](l): Al](l) + /1611(1) lf_] 0
> Update 0 via gradient descent
l l l
v Bij() — gij() _ aAij()

> Repeat until convergence

®  Repeat for more random initialisations www.gettyimages.com

> Keep the value of 0 such that the cost function is the smallest amongst all random initialisations
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5. Neural Networks
Example of HFT price prediction
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Neural Networks are black

® More hidden layers
» More complicated nonlinear transformations

» More difficult to interpret the effect of each parameter in the outcome

®  You do not fully understand what is going on

» You cannot explain the “nonlinear factors” the model is picking
» Like Forrest Gump’s boxes of chocolates:
“You never know what you are going to get”

» It is difficult to audit a neural network model

®  Younormally hit a local minimum, not the global minimum

» The local minimum depends on the initial conditions

> Several random initialisations are needed to geta better local minima

But the black box approach works!
» Neural networks have shown their worth in multiple applications
> Deep learning is impressive

Even if its Black Box is actually “darker than black”
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Neural Networks and HFT

Justin Sirignano, “Deep Learning for Limit Order Books”, preprint ArXiv 2016

In a Model-driven approach we decide the equations and relations governing the dynamics of the system
> Market orders follow a Poisson process (no-memory) or a Hawkes processes (memory)
» The Limit Order Book (LOB) replenishes itself at a certain rate

> The mid-price follows a stochastic process e.g. Ito process, Levy process

. . . == 0 )
In a Data-driven approach there are no assumptions on the dynamics of the system I T(x) 20" (X,o)dx:M[T(f)A :0'nu:.a), J £ wan

Bﬂ "
' J

> Conditional probability of future prices given the current state of the LOB

fo.

( 4 1n1,(x,6))-f(x,0)d‘21”” 1l
a0

v Given the volumes and prices of several levels of the LOB at time t J-(;; s

0 [r( 0¥

V" Predict the future best bid and ask prices at time t + h '” M7()=20,,

powerlisting. wikia.com

swisscognitive.ch
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Discrete LOB model

®  The LOB model
> The paper builds a joint distribution of best bid and ask prices at time t + h
> Conditioned on the state of the LOB at time t
" 10 bid and ask levels of the LOB, including best bid and ask prices

Adding spacial distribution to neural networks
> Standard neural networks have outputs on a finite set

> The paper extends this to an infinite, discrete output set e.g. Z

®  Adding “closeness” in the LOB
> Normally, all samples in a neural network are independent
> Butin reality, if two samples are “close” then they should behave “similarly”

> The spacial neural networks allows to define a probability notion of “closeness”

The bid-ask spread is not constant i.e. the bid and ask prices do not move together “in lockstep”
> For the majority of the NASDAQ stocks, more than 50% time there is no lockstep move
> For half of the NASDAQ stocks, they move in locksteps only of the17% of the time
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Hypotheses

Infinite price levels for the LOB
> Price levels in Z (zero is best ask price)

> For classical neural networks it has to be capped e.g. [-50,50]

arxiv.org/pdf/1601.01987.pdf

6000
®  Asks
Bid and ask price distributions oo | . * Bids ||
> Some research consider them separately and independent
> But then they need to add a variable for the spread 4000 |- ¢ ¢
v Constant or mean-reverting Size ™
> This paper models bid and ask prices together 000 1 .* * .
) .

2000 o o

Fixed time horizon of h = 1 second
. o* .
> NASDAQ is open from 9:30 to 16:00 1000 = =T = ; T It
Level

> 6.5 hours > 23,400 seconds

> This is enough to calibrate the model on a daily basis

> In the paper the training sample is 500 NASDAQ stocks over 20 months in 2014-2015

A 1-second forecast of price moves qualifies as HFT model
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Results

e
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Neural networks outperform nonlinear logistic regressions

> Neural networks have lower out-of-sample error

The spacial neural network outperforms standard neural networks

> And there are less parameters due to its local spacial structure (170,000 vs 20,000)
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We do not fear ML jargon anymore

Data Science Logistic regression Logistic unit

Machine Learning Classification boundary Nonlinear features

Cost function ¢ Accuracy ¢  Neural Networks

Linear regression ¢ Confidence Interval ®  Weights

Training a model ¢ Precision ¢ Hidden layer
Cross-validation ®  Recall ®  Deep Learning

Test set ¢ Fl score ¢  Forward propagation
Overfitting ¢  Single class ®  Backward propagation
Bias ¢  Multi class ¢ Non-convex optimisation
Variance ®  OnevsAll ®  Random initialisation
Regularisation ¢ Gradient descent ¢ Data-driven approach

Learning rate

souleater.wikia.com




References on ML (updated)

Books on Statistical Learning

* Hastie, Tibshirani et al “Elements of
Statistical Learning” (Data mining,

Inference, Prediction)

® Hastie, Tibshirani et al “An introduction

to Statistical Learning” (with applications
to R)

There is a MOOC associated to them as well

__——

Machine Learning

Stanford e CalTech
® tantor
e, GeonE | » Online lectures
» Coursera MOOC W oy ON TEST 3+ SW,
‘ ) ) NS A : = » Machine Learning
» Machine Learning ee o } 78] O<
- 2 © B}
> Andrew N g g[ \g . 1 ll l ol + > Yaser Abu-Mostafa
g z é ( :“. x l\ l‘ « . »
207 01" \ , > Book: Learnmgfrom Data
RS\ (10 X [
> = —L/N . e \N D4 x\'m
~ AN X
< N Pwr )
il

®  YouTube videos

» Neural Networks Demystified
>  Welch Labs
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